

Solar-Terrestrial Physics –

The Sun's Atmosphere, Solar Wind, and the Sun-Earth Connection

The Solar Corona is the Sun's Extended Atmosphere

Scattered light makes it visible during a total eclipse of the Sun

X-Rays Reveal 3D Magnetic Loops and Arches

The corona is full of magnetic structures at all scales

Steve Lantz Electrical and Computer Engineering 5860 www.cac.cornell.edu/~slantz http://www.lmsal.com/SXT/homepage.html

Close-Up of Some Magnetic Loops

Data from the TRACE satellite at 171 Å (EUV)

*QuickTime movie of Yohkoh SXT images shows the 3D structure of magnetic loops

Coronal Holes

Usually found at the poles, they can extend to lower latitudes

The Corona is a Very Dynamic Place!

The Restless Corona (from SOHO)

Solar Flares

Plasma catastrophes trigger bursts of radiation

Flares Often Occur Along Coronal Arcades

An arcade marks a seam between regions of opposite polarity. Shear motion along the seam can cause it to flare all at once.

Steve Lantz Electrical and Computer Engineering 5860 www.cac.cornell.edu/~slantz

(TRACE image)

Flare Movie from SDO

First one flash, then more, then a shock that rearranges the global field!

Steve Lantz Electrical and Computer Engineering 5860 www.cac.cornell.edu/~slantz

*See the sequence in the QuickTime movies

Flares Are Also Associated with Flux Emergence

Hinode initial results page: http://solar-b.nao.ac.jp/news_e/20061127_press_e

The Corona in X-Rays from Solar Max to Min

http://en.wikipedia.org/wiki/File:Yohkoh_solar_cycle.jpg

Sunspots and Active Regions

This was the most highly resolved solar image ever taken by the 1-meter Swedish Solar Telescope (SST) on La Palma.

- Dark patches: umbrae
- Less-dark streaks: penumbrae

Credit: Royal Swedish Academy of Sciences, 2002

X-Ray Emission Above a Sunspot

Evershed Flow in a Sunspot Penumbra

The *chromosphere* lies just above the photosphere. Here, magnetic features are highlighted by spectral lines like H α , Ca II K, and Ca II H (image at right). When viewed in H α , bright areas near sunspots are called "plage" (French for "beach").

Sunspot Number May Influence Terrestrial Climate

- More sunspots means *more* light—bright *faculae* ("little torches") outweigh dark sunspots. Rough explanation: toward the limb, strong magnetic fields create a sort of window into the deep, hot sides of convection cells.
- Just one more reason why understanding solar magnetism is important

The Solar Corona Why is the corona hot?

- Observation: coronal radiation implies very high temperatures
 - Unusual spectral lines can be traced to highly ionized atoms, e.g., Fe XIV
 - The corona is bright in X-rays with an equivalent blackbody temperature ~10⁶ K
- Heat cannot just flow to a region of higher temperature
 - Violates the 2nd law of thermodynamics!
- Something must be doing mechanical work on the plasma
 - Magnetic energy is dominant in the corona
 - Work can be done against Lorentz forces to build up magnetic energy further
 - Ohmic heating of the plasma occurs where current is flowing
 - Points to a heating mechanism mediated by magnetic fields
- Two possible scenarios:
 - Waves from the photosphere (and below) travel up along the magnetic field, depositing energy as they go
 - Flares, microflares, nanoflares... solar flares of all scales are always happening, leading to magnetic reconnection and heating

Competing Models of Coronal Heating

Problems with the Heating Models

Due to the low resistivity of the corona

- The corona makes a very good cavity for trapping waves, but not for dissipating them.
 - Magnetosonic waves don't propagate up through the chromosphere.
 - Shear Alfven waves propagate but are scarcely damped.
- Reconnection rates are slow. Nanoflares are not (yet) observed.

mechanisms are different in these alternatives need damping by (anomalous?) resistivity via reconnection releases at airrent sheets nanoflares s in Sweet-Parker n avalanche model dist . is typical Rog E

The starting point is the full electromagnetic energy equation, with no approximations, which can be derived from Maxwell's equations.

Magnetic energy density =
$$B^2/8\pi$$
. Begin with Faraday's
law, $\frac{\partial B}{\partial t} = -c \nabla X E$. Take $\frac{B}{4\pi}$ of this
 $\frac{\partial}{\partial t} \left(\frac{B^2}{8\pi}\right) = -\frac{C}{4\pi} B \cdot \nabla X E$. Use $\left(\frac{A}{2} \cdot \nabla X B = \frac{B}{2} \cdot \nabla X A - \nabla \cdot (A \times E)\right)$
 $= -\frac{C}{4\pi} E \cdot \nabla X B + \frac{C}{4\pi} \nabla \cdot (B \times E)$
Ampere's law: $\nabla X B = \frac{4\pi}{C} j + \frac{1}{C} \frac{3\pi}{2}$
(Note we're assuming $D = E$ and $H = B$ throughout.)

$$\frac{\partial}{\partial t} \left(\frac{B^{2}}{8\pi}\right) = -\frac{G}{4\pi} \cdot \frac{1}{2} E \cdot \frac{\partial E}{\partial t} - \frac{1}{2} \cdot E - \frac{G}{4\pi} \nabla \cdot (E \times B)$$

$$\frac{\partial}{\partial t} \left(\frac{E^{2} + B^{2}}{8\pi}\right) = -\frac{1}{2} \cdot E - \frac{G}{4\pi} \nabla \cdot (E \times B)$$
Ao for this is 0 work + (2) - $\nabla \cdot (Poynting flux)$
nothing more that $\partial - \nabla \cdot (Poynting flux)$
Nothing more that $\partial E + M$ theory $\partial hm \cdot b \, hav$,
plus assumption that $\partial E / \delta t$ is regligible.
$$j = \sigma E' = \sigma (E + t \nabla \times B)$$
in fluid frame in "lab" or fixed frame, via Lorentz transf.

$$\begin{split} & \Xi = \frac{c}{4\pi\sigma} \nabla \times B - \frac{t}{c} \nabla \times B = \frac{1}{\sigma} - \frac{t}{c} \nabla \times B \\ & 0 - \dot{f} \cdot \Xi = \frac{-\dot{f}^2}{\sigma} + \frac{t}{c} \dot{f} \cdot (\nabla \times B) \quad \text{and} \\ & (2 - \frac{c}{4\pi} \nabla \cdot (\Xi \times B) = -\frac{c}{4\pi} \nabla \cdot (\frac{i}{\sigma} \times B) + \frac{c}{4\pi} \frac{t}{c} \nabla \cdot [(\underline{v} \times B) \times B] \\ & \text{Meaning becomes clearer when we rewrite} \\ & t \dot{f} \cdot (\nabla \times B) = -\frac{t}{c} \nabla \cdot (\dot{f} \times B) = -\nabla \cdot F_{\text{Lorentz}} \\ & \vdots \text{ this term is work done by the fluid cgainst the} \\ & \text{Jorentz force, (In the equation for kinetic energy,} \\ & \text{this term appears with } d (+) \text{ dign : work done} \\ & \text{lay the Jorentz force on the fluid.} \end{split}$$

:. - J.E = { ohonic heating, J=3 + { work done vs. Lorenty force, -Y.F. worentz } Rewrite in terms of $\nabla X B$; let $\gamma \equiv \frac{C^2}{4\pi\sigma}$ neglect Note that $\frac{1}{2t} \left(\frac{E^2 + B^2}{8\pi} \right) \longrightarrow \frac{1}{2t} \left(\frac{B^2}{8\pi} \right)$, MHD limit $\frac{\partial E}{\partial t}$ $\frac{\partial}{\partial t} \left(\frac{B^2}{8\pi} \right) = -\frac{\gamma}{4\pi} \left[\nabla X B \right]^2 - \frac{1}{4\pi} \mathcal{V} \cdot \left[\left(\nabla X B \right) \times B \right]$ $-\nabla \cdot \left[\frac{\gamma}{4\pi} (\nabla \times B) \times B - \frac{1}{4\pi} (\Psi \cdot B) B\right]$ $-\nabla \cdot \left[\frac{1}{4\pi} B^2 \Psi\right]^{\mu} \qquad \text{und identify for } A \times (B \times C)$ $(\text{Combine: } B^2 \Psi)$

MHD Magnetic Energy Equation – 5 Final form

• After combining and rearranging all terms that involve v, the result is:

$$\left(\frac{1}{24} + \nabla \cdot \nabla\right) \frac{B^2}{8\pi} = -\frac{j^2}{\sigma} - \frac{B^2}{4\pi} \left(\nabla_{\perp} \cdot \nabla_{\perp}\right) - \frac{c}{4\pi} \nabla_{\cdot} \left(\frac{j \times B}{\sigma}\right)$$

- Notice that the original Poynting flux due to v has been largely cancelled out by terms representing work against the Lorentz force!
- Only two terms with **v** are left:
 - A simple advection term (moved to the left-hand side)
 - A term representing loss of magnetic energy due to sideways spreading of flux
- The only real energy sink is ohmic heating, j^2/σ
- One can equally well derive this result from the MHD induction law

alven Waves - Ideal Assume background field Bz = const. in space, time $\frac{1}{4\pi} (\nabla \times \underline{B}) \times \underline{B} \simeq \frac{1}{4\pi} (\nabla \times \underline{B}') \times \underline{B}_{2} \stackrel{2}{\approx} \underline{B}' = fluc'n.$ = 47Bz = B' Lorentz force due to perturbing Bz. assume |B| << B2. $\frac{\partial v'}{\partial t} + \frac{v'}{2} \frac{\partial v'}{\partial t} = \frac{-1}{p_0} \nabla p + \frac{1}{4\pi p_0} B_2 \frac{\partial}{\partial z} B'$ 2nd order in fluc'n. assume const. background density, pressure. neglect p, can get rid of it by taking curl

$$\frac{\partial B}{\partial t} = \nabla \times (\Psi \times B) = -\Psi \cdot \nabla B + B \cdot \nabla \Psi$$

$$\frac{\partial B}{\partial t} = \nabla \times (\Psi \times B) = -\Psi \cdot \nabla B + B \cdot \nabla \Psi$$

$$\frac{\partial B}{\partial t} = \nabla \times (\Psi \times B) = B_2 + B' \cdot Only |s^{\pm} order tern \cdot$$

$$\frac{\partial B}{\partial t} = B_2 \frac{\partial}{\partial t} \psi'$$

$$\int_{D} Dimplify, \quad let \quad B' = B_x, \quad \Psi' = V_x \quad dre \quad to \quad initial \quad conditions$$

$$\frac{\partial V_x}{\partial t} = \frac{B_2}{4\pi\rho_0} \frac{\partial B_x}{\partial Z}, \quad \frac{\partial B_x}{\partial t} = \frac{B_2}{4\pi\rho_0} \frac{\partial^2 V_x}{\partial Z^2}$$

$$\frac{\partial^2 V_x}{\partial t^2} = \frac{B_2}{4\pi\rho_0} \frac{\partial^2}{\partial Z} \left(\frac{\partial B_x}{\partial t}\right) = \frac{B_2^2}{4\pi\rho_0} \frac{\partial^2 V_x}{\partial Z^2}$$

$$\frac{\partial^2 V_x}{\partial t^2} - V_t^2 \frac{\partial^2 V_x}{\partial Z^2} = O, \quad V_t^2 = \frac{B_2^2}{4\pi\rho_0} \quad v_t = Ollyc \text{ speed}$$

$$\frac{\partial V_x}{\partial t^2} - V_t^2 \frac{\partial^2 V_x}{\partial Z^2} = O, \quad V_t^2 = \frac{B_2^2}{4\pi\rho_0} \quad v_t = Ollyc \text{ speed}$$

$$\frac{\partial V_x}{\partial t^2} - V_t^2 \frac{\partial^2 V_x}{\partial Z^2} = O, \quad V_t^2 = \frac{B_2^2}{4\pi\rho_0} \quad v_t = Ollyc \text{ speed}$$

$$\frac{\partial V_x}{\partial t^2} = \frac{\partial V_y}{\partial Z^2} = O, \quad V_t^2 = \frac{B_2^2}{4\pi\rho_0} \quad v_t = Ollyc \text{ speed}$$

$$\frac{\partial V_x}{\partial t^2} = V_t \quad v_t = V_t \quad v_t = V_t \quad v_t = Ollyc \text{ speed}$$

alfven Waves - Damped Jake above equations and assume dependence e i(wt-kz) Include relistive term in induction egn. $i\omega\hat{v}_{x} = \frac{B_{2}}{4\pi\rho_{o}}(-ik)\hat{B}_{x}, \quad i\omega\hat{B}_{x} = B_{2}(-ik)\hat{v}_{x} - \eta k^{2}\hat{B}_{x}$ $\hat{B}_x = -B_z \stackrel{k}{w} \hat{V}_x + \frac{i\eta k^2}{i\omega} \hat{B}_x$ solve this for \hat{B}_x $\therefore \hat{B}_{x} = -B_{z} \frac{k}{\omega} \hat{\upsilon}_{x} \left(1 - \frac{i \eta k^{2}}{\omega} \right)^{-1}$ $i\omega \tilde{V}_{x} = \frac{B_{2}}{4\pi\rho_{0}} (-ik) (-B_{2} \frac{k}{\omega}) \tilde{v}_{x} (1 - \frac{i\hbar}{\omega})^{-1}$ $i\omega(\omega - i\eta k^2) = \frac{B_2}{4\pi\rho_0}(+ik^2) \qquad (\frac{\omega^2}{k} - i\eta\omega = V_A^2)$ W2 - in k2W - k2V2 = O quadratic equ. for w

$$\begin{split} \omega &= \frac{i\eta k^{2} \pm \sqrt{-\eta^{2} k^{4} + 4k^{2} V_{A}^{2}}}{2} \quad \eta = 0 \Rightarrow \omega = \pm k V_{A} \vee \\ \omega &= k V_{A} \left[\frac{i\eta k}{2 V_{A}} \pm \sqrt{1 - \frac{\eta^{2} k^{2}}{4 V_{A}^{2}}} \right] \\ \mathcal{K}_{ed} \text{ part} : \quad \omega_{r}^{=} \pm k V_{A} \sqrt{1 - \frac{\eta^{2} k^{2}}{4 V_{A}^{2}}} \\ \mathcal{I}_{mag} \text{ part} : \quad \omega_{r}^{=} \pm k V_{A} \left(\frac{i\eta k}{2 V_{A}} \right) \sim \omega_{r} \left(2u \right)^{-1} \\ \mathcal{L}_{u} &= \mathcal{J}_{undquist} \text{ no.} = \frac{2 V_{A}}{\gamma} : \text{ very big in order corona} \\ :, \left(\frac{i\eta k}{2 V_{A}} \right)^{2} \text{ is a small correction to } \omega_{r} \approx \pm \left[k V_{A} \left[1 - \frac{1}{2} \left(\frac{\eta k}{2 V_{A}} \right)^{2} \right] \\ \mathcal{M}_{ate} &= i \omega_{r} t = \exp\left(i \left(\frac{i\eta k^{2}}{2} \right) t \right) = \exp\left(- \frac{\eta k^{2}}{2} t \right) \\ exponentially decouped, as expected. \end{split}$$

Why Are the Alfvén Waves Damped?

- Ideal wave (below) depends on transverse, "frozen-in" displacements of B_{z}
- Resistivity weakens the necessary currents, causing the amplitude to slip

- 1) Ideal right-traveling wave goes like $\exp(i\omega t ikz) \rightarrow j_v = -ikB_x(c/4\pi)$
- 2) Using $\omega = kv_A$: $i\omega v_x = j_y B_z / (c\rho_0)$, $ikv_A v_x = -ikB_x (v_A^2/B_z)$, $v_x / v_A = -B_x / B_z$
- 3) Integrate over dt to show that fluid and field line displacements are equal

The Lundquist Number in the Solar Corona

- The Lundquist number is the dimensionless ratio of two timescales:
 - Alfvén wave travel time over a distance L
 - Resistive diffusion time over the same distance
- It is equal to the magnetic Reynolds number divided by the Alfvén Mach number, R_m/M_A

How large is
$$L_{\mu}$$
? Need to know resistivity of solar
planna. Spitzer (1962) formula for H planna gives
 $\eta = 5.2 \times 10^7 \ln \Lambda (T^{-3/2}) \frac{m^2}{5ec}$ [from Zirin, + Stix]
where $\ln \Lambda = 5$ for CZ, 10 for chromosph., 20 for corona.
 $L_{\mu} = \frac{V_{\mu}L}{\eta} = \frac{10^6 \frac{15}{5ec} \cdot 10^8 m}{10^9 (10^6)^{-3/2}} = 10^{14}$! corona

Estimate of Heating Rate Due to Alfvén Wave Damping

$$L = \frac{1}{2} \int_{0}^{\infty} \frac{1}{2$$

Exponentially decaying wave is identical: $\partial/\partial t |B_x^2/(8\pi)| = 2\omega_i |B_x^2/(8\pi)|$

... How does this stack up against the nanoflare/reconnection model?

Sweet-Parker Model of Reconnection – 1

It's only a 2D model, but it takes into account that the reconnection region must be very thin when the diffusivity is extremely low

How big can the inflow be, given these geometric constraints?

Sweet-Parker Model of Reconnection – 2

We estimate the layer thickness from MHD magnetic induction, and the outflow speed by assuming it is driven by the Lorentz force

because magnetic pressure drives flow Br ~ 1/2 pr 2 Finally, need to balance inflow rate with diffusion (reconnection) U~ B = VA VB~ NB > S~ NV : V~ SVA ~ MVA $\Rightarrow V \sim \left(\frac{\gamma V_A}{L}\right)^{1/2} = V_A \left(\frac{\eta}{V_A L}\right)^{1/2} = V_A \left(Lu\right)^{-1/2}$ where $Lu \equiv Lundquist number \equiv \frac{V_A L}{n}$

Once again, the Lundquist number comes into play...

Sweet-Parker Model of Reconnection – 3

Unfortunately, the low rate of magnetic energy conversion is reduced even further if *L* also approximates distance *between* current sheets:

It is possible to improve the $(Lu)^{-1/2}$ to ln(Lu) through better models, such as the ones by Petschek or by Sonnerup and Priest, which have refinements:

- The plasma is compressible—fast or slow magnetosonic shocks allow $u > v_A$
- The incoming magnetic field is bent by shocks, so outflow is broader (in 2D)

Spicules/Fibrils (on the limb/disk)

A possible effect of sound waves on the solar atmosphere

Short-lived, tall jets in the H α chromosphere may be driven by *p*-modes

Steve Lantz Electrical and Computer Engineering 5860 www.cac.cornell.edu/~slantz Credit: Royal Swedish Academy of Sciences *See QuickTime movie of spicules in action

Filaments and Prominences Viewed in $H\alpha$

They are condensations of cooler gas suspended in the corona

Prominences Can Be Very... Prominent!

Filaments Tend to Form on Magnetic Neutral Lines

This gives us a clue about what holds them up

Source: NSO and NOAA/SEL/USAF

HAO A-008

Huge Eruptive Prominence Captured by STEREO

Steve Lantz Electrical and Computer Engineering 5860 www.cac.cornell.edu/~slantz

*QuickTime movie shows all the action

Eruptive Prominence from SDO First Light

Steve Lantz Electrical and Computer Engineering 5860 www.cac.cornell.edu/~slantz

http://science.nasa.gov/science-news/science-at-nasa/2010/21apr_firstlight/

Zoomed-In Animation of Eruptive Prominence

Watch for the twist in the plumes of plasma as they descend

Steve Lantz Electrical and Computer Engineering 5860 www.cac.cornell.edu/~slantz

*QuickTime movie shows the event

A Coronal Mass Ejection Witnessed by SOHO/LASCO

CME events are often associated with eruptive prominences

Coronal Structures – 1

Possible MHD equilibria for long-lived formations

Magnitic fields dominate
$$\Rightarrow$$
 equilibrium must
have no dorenty force, $j \times B \approx 0$.
 $\forall j=0$: Potential field, *Invest-energy* state. (but need resultivity)
 $\forall \chi = 0$, $\forall x \forall x B = 0$, $-\forall^2 B = 0$ Laglace eqn.
 $\forall \chi = 0$, $\forall x \forall x B = 0$, $-\forall^2 B = 0$ Laglace eqn.
 $\forall \chi = 0$, $\forall x \forall x B = 0$, $-\forall^2 B = 0$ Laglace eqn.
 $\forall \chi = 0$, $\forall x \forall x B = 0$, $-\forall^2 B = 0$ Laglace eqn.
 $\forall \chi = 0$, $\forall x \forall x B = 0$, $-\forall^2 B = 0$ Laglace eqn.
 $\forall \chi = 0$, $\forall x \forall x B = 0$, $\forall x \forall x B = 0$, $\forall x B =$

Coronal Structures – 2

Prominences and their eruption

Some coronal phenomena Really both manifestations "fromisence" t have cooler, noer planna pupported "filamen j flows along prominerices can erupt, the filament; eading to coronal JXB is up Normal polarity 4 CME) thought to be no on magnetic bubl a planty" > squeeze

Can get the prominence to eject by squeezing the footpoints

Coronal Structures – 3

Creating a solar flare

- sudden release meybe very fast with reconnection magnetic arch due to twist/shear (D (in) (out)

Can get the arcade to flare by *shearing* or *twisting* the footpoints

Coronal structures and dynamics can have consequences for Earth...

- Equilibrium structures (prominences, arcades) can suddenly lose stability, ejecting plasma and/or radiation into interplanetary space
- Low-level disturbances (waves, nanoflares) apparently heat the steady-state corona to high temperatures
 - This turns the corona into a much stronger X-ray source than the photosphere
 - As we will see, it drives a steady-state plasma outflow, the solar wind

Solar Wind Formation

First look at bydrostatie, extended corone, V=D and pressure force is balanced by gravity: $-\frac{dp}{dr}-p\frac{GMO}{r^2}=0$ assume p= p RT m T= const., m= 0.5 mp 1 dp = - GMOMP. 1 P dr = - ZKT. F2 (half Ht, half e) let p= po at r= R, the base of the corone $\implies hp = \frac{GM_0M_p}{2kT} + K$ $\ln \frac{1}{P_0} = \frac{GM_0m_P}{2kT} \left(\frac{1}{r} - \frac{1}{R} \right)$ p(r) = po exp { GMom, (+-+)} hydrostatic sol'n. problem: as (->>>, p-> po exp {- GMOMp} ZKTR } for coronal T of 106, this is ~ Poe⁻⁸ ~ 3×10⁻⁴ Po, for higher than p of ISM: minnetch.

Parker (1958) Solar Wind Equation – 1

assume flow is steady, jothermal, depends on r only $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho y) = \frac{1}{\Gamma^2} \frac{\partial}{\partial \Gamma} (\rho y) = 0$ $p \frac{\partial v_r}{\partial t} + p v_r \frac{\partial v_r}{\partial r} = -\frac{\partial p}{\partial r} - \frac{p G M_0}{r^2}$ neglecting B. Also need egn. of state, $p = p \frac{RT}{m}$ $\mu = avg.$ molec weight in amu, now : $\mu \sim 0.5 \frac{g}{mole}$ From first equ., $dr r^2 v = -\rho dr (r^2 v)$ or can integrate, $4\pi r^2 pv = const \Longrightarrow$ from equ. of state mass per unit time across pheres = const. $\frac{dp}{dr} = \frac{RT}{M} \frac{dp}{dr} = \frac{RT}{M} \left(-\frac{p}{r^2 v} \cdot \frac{d}{dr} \left(r^2 v \right) \right)$

Parker (1958) Solar Wind Equation – 2

 $V \frac{dv}{dc} = + \frac{KT}{M} \frac{1}{c^2 v} \frac{d}{dc} (r^2 v) - \frac{GM_0}{C^2}$ $= \frac{RT}{M} \frac{2RV}{F^2V} + \frac{RT}{M} \frac{1}{V} \frac{dV}{dr} - \frac{GM_0}{F^2}$ $\left(1-\frac{RT}{\mu V^2}\right) \sqrt{\frac{dV}{dT}} = \frac{2RT}{\mu} \frac{1}{r} - \frac{GM_0}{r^2}$ Define C7 = RT/u, like a sound speed. C3 = XKT Doal: polutions for which $p = \frac{const.}{4\pi r^2 V} \rightarrow 0, p \rightarrow 0$ for large r. This says vart where q > -2 Part also: need transonic flow solution (sul -> super) like flow in a Laval noggle - dwerging geometry las PT high VCCs I V>Cs

Parker (1958) Solar Wind Equation – 3

 $\implies \frac{1}{2\sqrt{2}} \frac{dv^2}{dr} \left(\frac{v^2 - c_T^2}{r} \right) = \frac{2c_T^2}{r} - \frac{GM_0}{r^2}$ where $c_{T} = \left(\frac{RT}{\mu}\right)^{1/2}$ is the isothermal sound speed. $\mu \equiv 0.5 \mu_{p}$ due to half $e^{-1}s$, half H+ (amu) At $r_c = \frac{GM_O}{2c^2}$, there is a change of sign. RHS <0 close to Sun; >0 far away Leads to I types of solution : either dr=0, V=CT V/Cer only this one satisfies b.c.'s. velocity increases monotonically with distance from Sun! T/rc stays subsonic Supersonic velocity at (supersonic at IAU)

The subsonic "solar breeze" solution is also permitted but is not observed Steve Lantz Electrical and Computer Engineering 5860 www.cac.cornell.edu/~slantz

Consider a non-rotating sum + solar wind. Magnetic field levies would be belown redeally ortewards until straight only steady state possible (field lines join at 2). Rotating Sun: still have U/ B in rotating frame of reference (field lines are anchored to rotating lon). If U is ion't // B => B varies in time. Assuming liq is zero is fixed frame, then in rotating frame lig = -wr. (Note that this is a wird assumption. Normally, if you pitched pometting off a merry go - round, e.g., it would have up = + wr, up = 0. Here things are constructed So that the angular momentum of the solar wind is zero.) (you push it off backward, so you speed up the sun by some ting amount!)

Jet's try several assumptions. (i) Up = -wr. Easiest to compute. at r=R (i) Mp (R)=0, i.e., velocity component in fixed frame is +wR, instantaneous. vel. at radius R where solar wind parcel leaves Sun Langular month.

(1) Show that field lines are Archimedean spirals—the same pattern made by streams of water from a rotating lawn sprinkler when viewed from above:

The equation $r-R = -\frac{\omega_r}{\omega}(q-q_o)$ is the eqn. of an archimedean spiral. Yet another result by Parker! (2) Modify (1) so that $U\varphi$ in fixed frame $\neq 0$, but = $\omega R^2 + \frac{1}{r}$ $\frac{r d \varphi}{d r} = \omega \frac{\varphi R^2 - r}{u}$, $d \varphi = \frac{\omega R^2 d r}{u} - \frac{\omega}{r^2} - \frac{\omega}{u} d r$ $\begin{pmatrix} conservation \\ ot ary. mon. \\ r V \varphi = (\omega R) R \end{pmatrix}$ q=-WR t- wr + K" Let q= qo at r= R 9 = - WR' R - WR + K" subtract equis. $Q - Q = \frac{\omega R}{n} \left(\left| - \frac{R}{r} \right| - \frac{\omega}{n} \left(r - R \right) \right) = -\frac{\omega}{n} \left(r + \frac{R^2}{r} - 2R \right)$ $(\varphi - \varphi_0 = -\frac{\omega}{u}\left(r - R\left(2 - \frac{R}{r}\right)\right) = -\frac{\omega}{u}\left(r + \frac{R^2}{r}\right) + \frac{2\omega R}{u}$

Sum of an Archimedean spiral and a hyperbolic spiral

magnetic field is advected radially outwards -but Sun is rotating - combines to give Spiral field lines. I "corotating streams" dipole field : lenes oppositely directed in each hemisphere => current sheet * open 3-D: 0 cross sect. close-up "hat with floppy brim " 000001

The 3D Current Sheet: "Ballerina Skirt"

Ulysses Main Results

- There are two distinct plasma regimes in the solar wind
 - Near the equator, speed (red line) is low and density (blue line) is high.
 Composition is typical of the corona.
 - At high to mid latitudes, speed is high and density is low, with less variability in both. Composition is typical of the photosphere.
 - Speed is approximately 750 km/s everywhere except near the equator.
- The solar wind's magnetic field is not based on a dipole
 - A dipole field would be twice as strong over the poles; in the solar wind, it is near-uniform with latitude.

at 1 AU: Gfen/fast region (extended holes) Earth Cinward/outward B) - slow/closed region (extended streamers) RAREFACTION Fart streams cheate compressions in B, p, leading to shock fronts in distant polar wind. SLow R quick rise Stow gradual fell-off to rarefaction)

Shocks in the Interplanetary Medium

Where a fast corotating stream follows a slow one

1 AU? rotating fronts, 2 encounters per polar rotation Oveall picture at This is true even for Farts "quiet Sun" - Just due to tilt of Sun 's rotation axis with Sun to seliptic plane

- Sector crossings involving shock compression have a greater effect on geospace than those involving rarefactions
- To see why, first need to understand the steady state of interactions between the near-Earth environment and the solar wind...

Chapman-Ferraro (1930) Magnetosphere

(Figure from Chapman and Bartels, 1940)

- Solar wind is like a superconductor that excludes the sunward dipole field
- At planar boundary, a current sheet forms; field is summed with image dipole
- Separatrix QQ defines the "cusp" latitude associated with auroral ovals

Anatomy of the Earth's Magnetosphere

Current Sheets at the Magnetopause and Across the Tail

At the "nose" of the magnetosphere, the magnetic pressure of the Earth's squeezed dipole field can stand up to the ram pressure of the solar wind

Coronal Mass Ejections

How to launch a "magnetic cloud"

Open field lines "coronal holes" closed field lines "loops" VS, Leady solar wind Can pinch off into "Coronal mass ejections" FAST big disruption when they hit the Earth's > magnetosphere SLOW CME Preceded by shock. polar cap wind

If aimed at Earth, a CME drastically changes the momentum (velocity and density) of the solar wind that impinges on the magnetosphere

Magnetic Reconnection and Plasmoid Ejection

Magnetic could contains southward IMF

Steve Lantz Electrical and Computer Engineering 5860 www.cac.cornell.edu/~slantz

*Play QuickTime movie of solar wind gusts hitting the magnetosphere

Cusp Aurora Due to Reconnection at High Latitude

Magnetic cloud contains northward IMF

Steve Lantz Electrical and Computer Engineering 5860 www.cac.cornell.edu/~slantz

http://web.ift.uib.no/~nikost/research.html

Sun-Earth System Is Driven by the 11-Year Solar Cycle

First-Ever 3D Images of the Sun from STEREO – NASA's Solar TErrestrial RElations Observatory satellites

Steve Lantz Electrical and Computer Engineering 5860 www.cac.cornell.edu/~slantz

http://www.nasa.gov/mission_pages/stereo/news/stereo3D_press.html

STEREO Images – 2 Spicules, Polar Coronal Hole, Prominence

STEREO Images – 3 Active Regions

Steve Lantz Electrical and Computer Engineering 5860 www.cac.cornell.edu/~slantz *See QuickTime movies for 3D animations